Remobilization of leaf S compounds and senescence in response to restricted sulphate supply during the vegetative stage of oilseed rape are affected by mineral N availability

نویسندگان

  • L. Dubousset
  • M. Abdallah
  • A. S. Desfeux
  • P. Etienne
  • F. Meuriot
  • M. J. Hawkesford
  • J. Gombert
  • R. Ségura
  • M-P. Bataillé
  • S. Rezé
  • J. Bonnefoy
  • A. F. Ameline
  • A. Ourry
  • F. Le Dily
  • J. C. Avice
چکیده

The impact of sulphur limitation on the remobilization of endogenous S compounds during the rosette stage of oilseed rape, and the interactions with N availability on these processes, were examined using a long-term (34)SO(4)(2-) labelling method combined with a study of leaf senescence progression (using SAG12/Cab as a molecular indicator) and gene expression of the transporters, BnSultr4;1 and BnSultr4;2, involved in vacuolar sulphate efflux. After 51 d on hydroponic culture at 0.3 mM (34)SO(4)(2-) (1 atom% excess), the labelling was stopped and plants were subject for 28 d to High S-High N (HS-HN, control), Low S-High N (LS-HN) or Low S-Low N (LS-LN) conditions. Compared with the control, LS-HN plants showed delayed leaf senescence and, whilst the shoot growth and the foliar soluble protein amounts were not affected, S, (34)S, and SO(4)(2-) amounts in the old leaves declined rapidly and were associated with the up-regulation of BnSultr4;1. In LS-LN plants, shoot growth was reduced, leaf senescence was accelerated, and the rapid S mobilization in old leaves was accompanied by decreased (34)S and SO(4)(2-), higher protein mobilization, and up-regulation of BnSultr4;2, but without any change of expression of BnSultr4;1. The data suggest that to sustain the S demand for growth under S restriction (i) vacuolar SO(4)(2-) is specifically remobilized in LS-HN conditions without any acceleration of leaf senescence, (ii) SO(4)(2-) mobilization is related to an up-regulation of BnSultr4;1 and/or BnSultr4;2 expression, and (iii) the relationship between sulphate mobilization and up-regulation of expression of BnSultr4 genes is specifically dependent on the N availability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L.

Because it has a high demand for sulphur (S), oilseed rape is particularly sensitive to S limitation. However, the physiological effects of S limitation remain unclear, especially during the rosette stage. For this reason a study was conducted to determine the effects of mineral S limitation on nitrogen (N) and S uptake and remobilization during vegetative growth of oilseed rape at both the who...

متن کامل

Contribution of Nitrogen Uptake and Retranslocation during Reproductive Growth to the Nitrogen Efficiency of Winter Oilseed-Rape Cultivars (Brassica napus L.) Differing in Leaf Senescence

Genotypic variation in N efficiency defined as high grain yield under limited nitrogen (N) supply of winter oilseed-rape line-cultivars has been predominantly attributed to N uptake efficiency (NUPT) through maintained N uptake during reproductive growth related to functional stay-green. For investigating the role of stay-green, N retranslocation and N uptake during the reproductive phase for g...

متن کامل

A Comparative Study of Proteolytic Mechanisms during Leaf Senescence of Four Genotypes of Winter Oilseed Rape Highlighted Relevant Physiological and Molecular Traits for NRE Improvement.

Winter oilseed rape is characterized by a low N use efficiency related to a weak leaf N remobilization efficiency (NRE) at vegetative stages. By investigating the natural genotypic variability of leaf NRE, our goal was to characterize the relevant physiological traits and the main protease classes associated with an efficient proteolysis and high leaf NRE in response to ample or restricted nitr...

متن کامل

The expression patterns of SAG12/Cab genes reveal the spatial and temporal progression of leaf senescence in Brassica napus L. with sensitivity to the environment.

Despite a high nitrate uptake capacity, the nitrogen use efficiency (NUE) of oilseed rape is weak due to a relatively low N remobilization from vegetative (mostly leaves) to growing parts of the plant. Thus, this crop requires a high rate of N fertilization and leaves fall with a high N content. In order to reduce the rate of N fertilization and to improve the environmental impact of oilseed ra...

متن کامل

Leaf senescence and nitrogen remobilization efficiency in oilseed rape (Brassica napus L.).

Despite its worldwide economic importance for food (oil, meal) and non-food (green energy and chemistry) uses, oilseed rape has a low nitrogen (N) use efficiency (NUE), mainly due to the low N remobilization efficiency (NRE) observed during the vegetative phase when sequential leaf senescence occurs. Assuming that improvement of NRE is the main lever for NUE optimization, unravelling the cellul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2009